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Abstract We derive a new quantum interaction by quantizing the Brownian motion based
on the Nelson equations. By applying the canonical quantization for the equations, inter-
action as the connection of Brownian and quantum motions appears. Interesting aspect is
that it can overcome the Coulomb repulsion if the diffusion coefficient is large enough. As
the parameters are mass, diffusion coefficient, and probability density, we can calculate and
predict the Cooper pair formation with measurable variables.
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1 Introduction

We introduce a new phenomenological description of quantum Brownian motion. There
are rich phenomena among quantum Brownian motion since it is anticipated to obtain the
unified framework of quantum statistical processes such as decoherence, particle creation,
dissipation, noise, fluctuation, and diffusion [1–3]. Considering some sort of noise [4–7],
the paradigm of statistical mechanics is applicable on quantum physics. There are several
methods to represent the quantum Brownian motion often subject to stochastic quantization.
Among others, we focus on the stochastic theory of Nelson [8] in the reason of predictiv-
ity dealing with all the measurable variables. By projecting conventional quantum system
onto his theory, highly predictive model is present. As it produces an attractive interaction
between two fermions, we can predict the Cooper pair formation without a free parameter.

Quantization of stochastic process has a long history with various attempts [9, 10]. The
most attractive one is the method of Parisi-Wu [11]. It includes an important issue of modern
field theory, i.e. a new approach for the gauge theory that it needs neither any gauge fixing
nor Faddeev-Popov ghost. Then, as a benefit, it gains new insights for correct nonpertubative
path integral formulation of gauge theories [12]. Consistency with conventional quantum
field theory like QED and Yang-Mills field was found in several explicit examples [13, 14].

H. Isimori (�)
Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
e-mail: silviasx3229@yahoo.co.jp

mailto:silviasx3229@yahoo.co.jp


1030 Int J Theor Phys (2010) 49: 1029–1043

Moreover, fermionic and bosonic fields can be quantized with the stochastic regularization
that preserves the symmetries of the original theory [15]. Thus, the theory is regarded as an-
other important way of quantization in addition to canonical and path integral formulations.

On the other hand, the quantization scheme of Nelson has few benefits. This is formu-
lated within the framework of classical Brownian motion. It is actually elegant in the sense
that the Schrödinger equation can be derived on the first principle of stochastic theory with
simple assumptions. Whereas, as it just explains the appearance of the famous equation
aside from important properties of quantum mechanics, this quantization is not helpful to
deeply understand the origin of quantum theory. To make matters worse, it suffers from the
representation of fermionic and Yang-Mill fields. Considering the success of the standard
model of particle physics, this problem is crucial. One might think it is useful if the quan-
tum mechanics can be expressed by the classical stochastic process. Nevertheless, this line
of thought makes no sense unless it does influence measurements.

The reason why we revisit the Nelson’s theory is that it predicts different dynamics from
Newtonian mechanics with measurable parameters. This is very useful to deal with the sto-
chastic modification of quantum mechanics. In the same way to quantize the Newtonian
equations, the Nelson equations can be quantized with yielding quantized stochastic inter-
action. The purpose of this paper is to analyze this interaction. In the view of stochastic
quantization of Parisi-Wu, the quantized stochastic interaction is characterized by the noise
term of the Langevin equation nonetheless it is disappeared after estimating expectation val-
ues if it is a white noise. When the theory is generalized with memory kernel and colored
noise, some complicated corrections will appear via modified Green function depending on
the noise correlation. For the reason of simple and strong predictions, we prefer the Nelson
equations.

There is no difficulty to apply the canonical quantization to the Nelson equations instead
of his own scheme. The equations describe the probability density of continuous medium so
they are quite similar to the Navier-Stokes equations [16]. With the help of Euler-Lagrange
formalism of stochastic mechanics [17, 18] or Navier-Stokes equations [19–21], the Hamil-
tonian of the system can be derived. The Hamiltonian is written by familiar kinetic and po-
tential terms plus the stochastic potential that is defined in this paper. Parameters of the new
potential are mass, diffusion coefficient, and probability density. Because mass is constant
and the canonical quantization of probability density is clear, the issue is how to quantize
the diffusion. If we invent the quantum osmotic velocity with a hypothesis formulation,
quantization of the stochastic potential becomes clear. Strictly speaking, it must be given by
formulating quantum diffusion [22–24], but here, we naively quantize them. For the sake
of the canonical quantization, fermionic fields are simply represented. After this procedure,
we can discuss the quantized stochastic interaction. Interestingly, the interaction becomes
attractive between opposite spins.

We apply the stochastic potential to the attractive force between a Cooper-pair. In the
BCS theory, the parameter of the force to construct the Cooper-pair remains free. If the sto-
chastic potential plays this role, it can predict the dependence of the diffusion coefficient for
the critical temperature and gap equation. Relating to the diffusivity of the wave function of
free electrons, Cooper-pairs will appear. With simple calculations, we exhibit the condition
for the formulation.

The paper is organized as follows. In Sect. 2, we review the stochastic mechanics of the
Nelson’s theory and add some modifications for convenience. Section 3 invents a new sys-
tem of quantum Brownian motion with deriving the stochastic potential that yields quantized
stochastic interaction. In Sect. 4, we calculate the perturbation of the potential for hydrogen
and helium. In Sect. 5, we analyze the new interaction for two Gaussian wave packets as
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an approximate eigenstate of two fermions to find new attractive interaction between them.
Section 6 applies the stochastic potential as the attraction between two electrons and the
condition of Cooper-pair formation is derived. Section 7 devotes the conclusion of our dis-
cussion.

2 Stochastic Equations of Motion

Likewise to quantum mechanics, stochastic mechanics compute the probability density ρ

[25]. Giving a probability space (�,F,P ) with state X and a set T of time, where F is a
collection {Ft : t ∈ T }, Ft is an X-valued random variable, and P is the probability measure,
we have a stochastic process {Xt : t ∈ T } defined as a collection of random variables. As for
the Markov process it can be represented by a parameter X with respect to {Ft }. Convention-
ally, the process can be equally represented by “forward” and “backward” equations. When
the probability u(k, t) = P (Xt = k) satisfies forward equations, they allow us to compute
all the numbers u(k, t + 1) once all the numbers u(j, t) are known. It moves toward from
time t to time t + 1. Similarly, backward equations allow us to move time t to t − 1. Gener-
ally, each evolutions of t to t + 1 and t to t − 1 obeys different dynamics. Hence, two types
of velocities are required: we define the mean forward velocity b+ and the mean backward
velocity b− for a process x(t) by

b+ ≡ D+x(t) = lim
ε→+0

E
(

x(t + ε) − x(t)

ε

)
,

b− ≡ D−x(t) = lim
ε→−0

E
(

x(t + ε) − x(t)

ε

)
,

(1)

where E (X) is the expectation value at the physical state X.
We assume that the probability density satisfies the Chapman-Kolmogorov equations

that dictate dynamics of a particle with b+, b− and ρ. The Fokker-Planck equations can be
derived by up to next leading order of the Chapman-Kolmogorov equations:

∂ρ

∂t
= −∇ · (ρb+) + 1

2
D∇2ρ,

∂ρ

∂t
= −∇ · (ρb−) − 1

2
D∇2ρ, (2)

where D is the diffusion coefficient.
Next, we introduce the acceleration of stochastic process, namely mean acceleration.

Definition of the mean acceleration is model-dependent [8, 26] and here we also introduce
new one.1 We first define following derivatives

D± ≡ ∂

∂t
+ b+ + b−

2
· ∇ ± 1

2
D∇2, (3)

1We define operators D± with the infinitesimal change: d̃x(t) = v(x(t), t)dt +dw(t) where w is the Wiener
process. A function can be expanded as

d̃f (x(t), t) = ∂f

∂t
(x(t), t)d̃t + d̃x(t) · ∇f (x(t), t) + 1

2

∑
i,j

d̃xi (t)d̃xj (t)
∂2f

∂xi∂xj
(x(t), t).

In the same scenario with d̃t = dt , it leads D± = D± ∓ u · ∇ . We reinterpret the Langevin equation d̃v(t) =
−βv(t)dt + K(x(t))dt + dB(t), then one finds D±v(t) = ∓βv(t) + K(x(t)) (see (4b), (8), (9) of [8]). This
can lead the mean acceleration of a = 1

2 D−b+ + 1
2 D+b− . In the limit of differentiable process, dv (under

the definition of [8]) corresponds to above one d̃v = dv.
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or D± ∓ b+−b−
2 · ∇ . Using them, we define the mean acceleration as

a ≡ 1

2
D−b+ + 1

2
D+b−. (4)

By assuming that a particle performs a Markov process, it will obey the Newtonian equation
of motion F = ma. The mean acceleration reads

a = 1

2

∂

∂t
(b+ + b−) + 1

4
((b+ + b−) · ∇)(b+ + b−) − 1

4
D∇2(b+ − b−). (5)

Comparing to other definitions, a type of solution becomes different.
Now, combining three equations (2), (5), and F = ma, Nelson’s stochastic equations of

motion can be derived:

∂v

∂t
= F

m
− (v · ∇)v + 1

2
D∇2u,

∂u

∂t
= −1

2
D∇(∇ · v) − ∇(u · v), (6)

where u = (b+ − b−)/2 is the osmotic velocity and v = (b+ + b−)/2 is the current velocity.
To make more convenient equations for our scheme, we rewrite the equations by using the
Fokker-Planck equations of next forms

∂ρ

∂t
+ ∇ · (ρv) = 0, u − 1

2
D∇ lnρ = 0. (7)

With some calculations, the second equation of (6) reduces the continuity equation. The first
equation can be also simplified such that

m
∂v

∂t
+ m(v · ∇)v − mD2

4
∇(∇2 lnρ) = F . (8)

Note that the normal distribution can cancel the additional force term.2 As our motivation
is to relate the quantum fluctuation with Brownian motion, above equations of motion are
preferred. In the original Nelson equations, normal distribution does not provide constant
energy. With this model, interesting phenomena can be found.

New equations of motion can be compared to the Navier-Stokes equations in the sense
that the convective derivative of the current velocity (∂/∂t +v ·∇)v and the continuity equa-
tion are included. Although it traces the trajectory of a particle, the dynamics is analogous
to describe the motion of fluid substance. This relationship can be deeper by applying the
mean acceleration to the Navier-Stokes equations: ρa = −∇p +∇ ·T +f , where p, T and
f are pressure, stress tensor and body force. This assumes pressure and stress tensor can be
defined on the probability density. On the other hand, fluid motion might be also described
by the modified Navier-Stokes equations. Therefore, there is a possibility to describe the
both of particle trajectory and fluid substance by the same equations. This can be viewed as
the wave-particle duality though the dynamics is fully classical.

2In the original equations, the additional force becomes −mD2

4 ∇(∇2 lnρ) − mD2

8 ∇(∇ lnρ · ∇ lnρ) which

can be rewritten as −mD2

2 ∇(
∇2ψ
ψ ), where ψ = eR and R = 1

2 lnρ. Obviously, it is close related to the
Schrödinger equation.
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3 Quantization of the Nelson Equations

We try to quantize the Nelson equations by deriving the Hamiltonian of the system. The
Hamiltonian will be derived from the Euler-Lagrange equation. In the context of Nelson’s
stochastic mechanics, the modified Lagrangian formalism is derived by [17]. Besides, as
the equations are quite similar to the Navier-Stokes equations, a technique of Lagrangian
formalism of the Navier-Stokes equations is also useful.

Equation (8) can be rewritten as

m

2
(D+ + D−)v − mD2

4
∇(∇2 lnρ) = F . (9)

As we have defined the differentiation of the current velocity as this form, the global least
action principle will be D++D−

2
∂L
∂v

− ∇L = 0. With this relation, the Lagrangian is derived
as3

L = 1

2
mv2 + mD2

4
∇2 lnρ − U. (10)

Considering the kinetic energy is mv2/2, the Hamiltonian is

H = 1

2
mv2 − mD2

4
∇2 lnρ + U. (11)

The second term can be regarded as a new potential which we call stochastic potential. When
this potential is constant, the probability density forms the normal distribution.

Now, we try to quantize the Hamiltonian (11). We apply the canonical quantization
with the conventional procedure. Then, physical variables are written by eigenvalues of the
wave function, e.g., x̂〈x|ψ〉 = x〈x|ψ〉, p̂〈x|ψ〉 = −i�∇〈x|ψ〉, and ρ̂(x) = 〈x|ψ〉〈ψ |x〉.
Since ρ̂(x) is the multi-component function in general, the operation of logarithm has
some ambiguity. It can be fixed by considering the quantization of the osmotic velocity
û〈x|ψ〉 = u〈x|ψ〉. We assume, as a hypothesis, the logarithm of ρ̂ operates for each com-
ponent of the density matrix rather than operates the matrix itself. As for the quantization
of the diffusion coefficient, we assume that it is a constant. For example, supposing the gas
kinetic model about defects [22], the diffusion coefficient will be D ∼ Aa2/�xσ , where A,
a, x, and σ are tunneling probability amplitude, lattice constant, fractional concentration,
and cross section, respectively. To regard it as a constant, local information should be dis-
carded. Actually, the quantization of the diffusion coefficient will be very complicated, but
as we neglect time evolution and take approximate solution, then the assumption will be
valid. Hence the osmotic velocity operator can be written by ûnm = 1

2 D∇ ln[ρ̂nm(x)]. As the
osmotic velocity is measurable, this should be confirmed by experiments.4

In this setup, the observable energy E = 〈ψ |H |ψ〉 can be calculated as

E = − �
2

2m
〈ψ |∇2|ψ〉 − mD2

4
〈ψ |∇2 ln[〈x|ψ〉〈ψ |x〉]|ψ〉 + 〈ψ |U |ψ〉. (12)

3It can be also derived from variational principle used for Navier-Stokes equations by taking L[qt , q̇t ] =∫
�0

d3a 1
2 mq̇2

t (a) + mD2

4 ∇2 lnρ(qt (a)) − U(qt (a)), where qt (a) = q(a, t) and q̇t (a) = v(q(a, t), t) [19].

4For instance, if the spinor component is mentioned, the quantum osmotic velocity is predicted as ui =
1
2 D〈ψα |∇i ln ρ̂αβ (x)|ψβ 〉 assuming the diffusion coefficient is common to any spinor.
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For the plane wave solution 〈x|ψ〉 = eip·x , the stochastic potential becomes zero. However,
linear combination of the solution makes a shift of energy since the system is no more linear.
The nonlinear effect becomes important depending on the diffusion coefficient. To recover
conventional quantum mechanics, the diffusion coefficient must be suppressed.

In latter sections, we mainly use the Gaussian wave packet because the stochastic poten-
tial gains a constant effect:

〈x|ψ〉 =
3∏

i=1

e
− (xi−Xi )

2

4(
xi )
2 +i

p·x
�

(2π(
xi)2)1/4
, (13)

which is normalized as
∫

d3x|〈x|ψ〉|2 = 1. The position uncertainty 
x is given by the
standard deviation


xi =
√〈

ψ |x2
i |ψ

〉 − 〈ψ |xi |ψ〉2. (14)

Hereafter, we assume 
xi = 
x for simplicity. In this case, the energy becomes

E = p2

2m
+ �

2

8m(
x)2
+ 3mD2

4(
x)2
+ 〈U〉 . (15)

The stochastic potential consists of mass, diffusion coefficient, and variance of position.
Since they are measurable, the stochastic potential can be investigated by experiments. When
the measurement systematic error can be reduced for samples of relatively large diffusion
coefficient, we expect that the potential can be discovered.

As we use the conventional quantization procedure, generalization of the system to fermi-
onic field, Yang-Mills field, and various interactions of quantum field theory will be possible
in the same manner of particle physics. Inclusion of the effect of the Brownian motion can
be realized by adding the stochastic potential with definitions of mean acceleration and
the quantum osmotic velocity at individual fields.5 Compared to the Nelson’s quantization
scheme, our procedure is less elegant but this can overcome several problems, e.g. unnatural
assumption D = �/2m that current experiments never support and difficulty of representa-
tions of quantum fields except scalar. Further, since our model has strong predictions, it is
easier to be proved.

Other notable thing is the correspondence of Brownian and quantum motions. We inherit
this heart from the Nelson’s theory so that the radical departure between their dynamics does
not exist. For both of Brownian and quantum particles, the probability density is described
and physical variables must be given by expectation values. As we can interpret that the
canonical quantization is merely a constraint of the system, the theory of Brownian motion
incorporates quantum mechanics. Although it cannot explain the fundamental scale of the
Planck constant, the concept of the dynamics is common. In other words, quantum particles
can be regarded as the special type of Brownian particles with the characteristic scale of the
Planck constant. On the source of randomness, there seems something special for quantum
particles to be characterized by the constant. This consideration is not important here but
when considering generalized process such as decoherence, noise, friction, it will make
some sense.

5As photon, weak bosons, and gluons are relativistic particles, Nelson’s theory should be extended with
relativity. There are some papers dealing with this issue [27, 28].
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4 Hydrogen and Helium

In this section, we calculate the energy shift caused by the stochastic potential. With the
perturbation using conventional wave functions of hydrogen and helium, the stochastic po-
tential is evaluated by measurable parameters. As the measurement of energy spectrum of
simple atoms is easy, this prediction is important.

When the stochastic potential is neglected, the wave function of an electron within a
hydrogen is

〈x|ψ〉n�m = Rn�(r)Y�m(θ,ϕ), (16)

where Rn�(r) is the radial function and Y�m(θ,ϕ) is the spherical harmonics. We apply
usual solutions of the Schrödigner equation to see a perturbative effect. We write the first
order of each energy level by V

(nm�)
st = −mD2

4 nm�〈ψ |∇2 lnρ(x)|ψ〉nm�. In the simplest case
〈x|ψ〉100 = 2(1/a0)

3/2e−r/a0/
√

4π , where a0 is the Bohr radius, it becomes

V
(100)

st = −mD2

4

∫
d3x

4e
− 2r

a0

4πa3
0

∇2 ln

[
4e

− 2r
a0

4πa3
0

]
= mD2

a2
0

. (17)

It is also easy to calculate for n = 2, e.g.

V
(200)

st = −mD2

4

∫
d3x

(2 − r/a0)
2e

− r
a0

4π(2a0)3
∇2 ln

[
(2 − r/a0)

2e
− r

a0

4π(2a0)3

]
= mD2

4a2
0

. (18)

In the same way, we can calculate lower energy modes. Some other examples are shown in
Table 1.

As a concrete example, let us consider the shift of the Lyman alpha. Generally, the diffu-
sion coefficient will change when an electron is excited, then our prediction is

E = −10.2[eV] + m(D1)
2

a2
0

− m(D2)
2

4a2
0

, (19)

where D1 is the diffusion coefficient for V
(100)

st and D2 for V
(200)

st . If the diffusion coefficient
remains the same, red-shift occurs. On the other hand, if atoms have various diffusions,
spectrum will be broadened. This can be compared with the Doppler broadening:6

P (f )df =
√

mc2

2πkBTf 2
0

e
− mc2(f −f0)2

2kBTf 2
0 df, (20)

Table 1 Each value of V
(n�m)
st

in the unit of mD2/a2
0 . We have

not tried the general case, but it
might be possible in the case of
hydrogen

(�,m) (0,0) (1,0) (1,±1) (2,0) (2,±1) (2,±2)

n = 1 1

n = 2 1/4 1/4 1/8

n = 3 1/9 1/9 2/27 1/9 2/27 1/27

6We refer to wikipedia and it assumes the Maxwell distribution to evaluate the doppler broadening.
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where P , f , c, kB , and T are fraction of particles, frequency, speed of light, Boltzmann
constant, and temperature, respectively. Observation of the broadening in the context of the
Brownian motion is interesting for the search of new potential.

We also consider the contribution of the stochastic potential for helium. To give a pertur-
bation, we write the Hamiltonian of a helium as H(0) + H(1) with

H(0) = − �
2

2m
∇2

1 − �
2

2m
∇2

2 − 2e2

4πε0r1
− 2e2

4πε0r2
,

H (1) = e2

4πε0|r1 − r2| − mD2

4
(∇2

1 + ∇2
2 ) ln ρ̂.

(21)

The energy of H(0) is E(0) = −(4α2mc2/2)(1/n2
1 +1/n2

2). The next level of the perturbative
energy is 〈ψ100|H(1)|ψ100〉 = −5mc2α2/4 + mD2/4a2

0 . The first excited mode is also easy
to be calculated. To anti-symmetrize the wave function, we use

〈x1,x2|�〉+ = 1√
2
(φ100(x1)φ2�m(x2) + φ2�m(x1)φ100(x2))χsinglet,

〈x1,x2|�〉− = 1√
2
(φ100(x1)φ2�m(x2) − φ2�m(x1)φ100(x2))χtriplet,

(22)

where χsinglet = (χ+χ− − χ−χ+)/
√

2, χtriplet = {χ+χ+, (χ+χ− + χ−χ+)/
√

2, χ−χ−}, and
χ+/− is the spin state of up/down. We consider the stochastic potential for the density ma-
trices of |�〉+ +〈�| and |�〉− −〈�| as V

(+)
st and V

(−)
st . They can be written by

V
(±)

st = −mD2

8

∫
d3x1d

3x2(φ100(x1)φ2�m(x2) ± φ2�m(x1)φ100(x2))
2

× (∇2
1 + ∇2

2 ) ln(φ100(x1)φ2�m(x2) ± φ2�m(x1)φ100(x2))
2. (23)

When � = m = 0, the equation yields Vst = 5mD2/4a2
0 . For � = 1 and m = 0, we have the

same result Vst = 5mD2/4a2
0 . Unlike them, for � = 1 and m = ±1, the calculation is so com-

plicated that we cannot get a precise result. Generally, for the system with many electrons,
the nonlinearity will make the calculation more difficult. In addition, as the diffusion coeffi-
cient has the dependence of number density, the perturbation will be useless if the diffusion
becomes large enough. Though the stochastic potential becomes important by increasing the
number of electrons, the theoretical predictions must be hard.

5 Attraction from the Stochastic Potential

We analyze the stochastic potential about two particles of free motions. Since the
Schrödigner equation is now nonlinear, the quantum state will be generally complicated.
However, it approximately contains a simple solution, that is, two isolated Gaussian distrib-
utions. If the overlap is small, the probability density of each particle can be adopted to the
Gaussian wave packet individually. As a simple example, let us consider two scalar fields
written by 〈x1,x2|φ1, φ2〉 = φ1(x1)φ2(x2) + φ1(x2)φ2(x1) with assuming φ1(x)φ2(x) ≈ 0.
Using this approximation, the Schroödinger equation reduces to
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Hφ1(x1)φ2(x2)

≈
(

−
2∑

n=1

�
2

2mn

∇2
n −

2∑
n=1

mnD
2
n

4
∇2

n ln[|φ1(x1)|2 |φ2(x2)|2]
)

φ1(x1)φ2(x2). (24)

Thereby, we can apply the normal distribution to each field. Nonlinear analysis will be im-
portant when they are very near since a new eigenstate of the nonlinear Schrödinger equation
may arise. Further, the configuration of the distributions will be changing as time evolves.
Although exotic phenomena might be found by considering the time evolution with the
nonlinear Hamiltonian, we treat the two normal distributions as stable enough to neglect
any nonlinear solution. Our statement of finding new attractive interaction means for the
two isolated Gaussian waves. If the above approximation is not valid, the analysis might be
quite different.

In the same way, we apply to fermions with the antisymmetric wave-function

|�〉 = 1√
ρ0

(|ψ1ψ2〉 − |ψ2ψ1〉), (25)

where ρ0 = (〈ψ1ψ2| − 〈ψ2ψ1|)(|ψ1ψ2〉 − |ψ2ψ1〉) is the normalization factor. For each par-
ticle, free motion with the Gaussian fluctuation is assumed. We represent the wave function
of the spin-1/2 by 〈x|ψn〉 = φn(x)χn where

φ1(x) = e
− (x−X1)2

4(
x1)2
+i

p1 ·x
�

(
√

2π
x1)3/2
, φ2(x) = e

− (x−X2)2

4(
x2)2
+i

p2 ·x
�

(
√

2π
x2)3/2
, (26)

and χn are arbitrary spin states which are eigenstates of en · Ŝ. Two-component spinor can
be explicitly given as

χn = e− iϕn
2 cos

(
θn

2

)(
1
0

)
+ e

iϕn
2 sin

(
θn

2

)(
0
1

)
, Ŝ = �

2
σ̂ ,

en = sin θn cosϕnex + sin θn sinϕney + cos θnez.

(27)

The Gaussian solution can be adopted when φ1(x)φ2(x) ≈ 0 that is |X1 −X2| � 
x1,
x2.
We can calculate ρ0 as

ρ0 = 1 − |k21|2|c1c
∗
2 + s1s

∗
2 |2, (28)

where cn = e−iϕn/2 cos(θn/2), sn = eiϕn/2 sin(θn/2), and k21 = ∫
d3xφ∗

2 (x)φ1(x) or

k21 =
(√

2
x1
x2

(
x1)2 + (
x2)2

)3

× e
− (X1−X2)2

4((
x1)2+(
x2)2)
− (
x1
x2)2(p1−p2)2

(
x1)2+(
x2)2
+i

(p1−p2)·((
x2)2x1+(
x1)2x2)

(
x1)2+(
x2)2 . (29)
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With a short hand notation χijk� = χiχjχ
†
k χ

†
� , the probability density function becomes

ρ̂(x1,x2) = − 1

2(2π
x1
x2)3ρ0

(
e

− (x1−X1)2

2(
x1)2
− (x2−X2)2

2(
x2)2 χ1212 + e
− (x2−X1)2

2(
x1)2
− (x1−X2)2

2(
x2)2 χ2121

− e
− (x1−X1)2+(x2−X1)2

4(
x1)2 e
− (x1−X2)2+(x2−X2)2

4(
x2)2

× (
e2i

(p1−p2)·(x1−x2)

� χ1221 + e−2i
(p1−p2)·(x1−x2)

� χ2112

))
. (30)

5.1 Kinetic Energy

Let us calculate the kinetic energy

K = − 1

2ρ0

∫
d3x1d

3x2(φ
∗
1 (x1)φ

∗
2 (x2)χ

†
1 χ

†
2 − φ∗

2 (x1)φ
∗
1 (x2)χ

†
2 χ

†
1 )

×
(

�
2

2m1
∇2

1 + �
2

2m2
∇2

2

)
(φ1(x1)φ2(x2)χ1χ2 − φ2(x1)φ1(x2)χ2χ1) . (31)

Writing �nm = ∫
d3xφ∗

n(x)∇2φm(x), it becomes

K = − �
2

2ρ0

(
�11 + �22

2m1
+ �11 + �22

2m2
− 2

(
1

2m1
+ 1

2m2

)
Re[�21k12]|c1c

∗
2 + s1s

∗
2 |2

)
. (32)

For a simple case 
x1 = 
x2 and p1 = p2 = 0, we have

K = 3�
2

4ρ0(
x1)2

(
1

2m1
+ 1

2m2

)

×
(

1 −
(

1 − (X1 − X2)
2

12(
x1)2

)
e

− (X1−X2)2

4(
x1)2 |c1c
∗
2 + s1s

∗
2 |2

)
. (33)

The kinetic energy gains |X2 − X1| dependence when |c1c
∗
2 + s1s

∗
2 | �= 0. Nonetheless, it

cannot combine a pair of two fermions due to the factor 1/ρ0.

5.2 Stochastic Potential: The Same Spin

The density matrix for the same spin, considering spin up, reads ρ̂11(x1,x2) = ρ(x1,x2)

and empty in other elements. The Stochastic potential can be expressed as

Vst =
∫

d3x1d
3x2

(
m1D

2
1

4

(∇1ρ(x1,x2))
2

ρ(x1,x2)
+ m2D

2
2

4

(∇2ρ(x1,x2))
2

ρ(x1,x2)

)
. (34)

When 
x1 = 
x2, we have

ρ(x1,x2) = 2e
−∑

n

(x1−Xn)2+(x2−Xn)2

4(
x1)2

(2π(
x1)2)3ρ0

×
(

cosh

[
(x1 − x2) · (X1 − X2)

2(
x1)2

]
− cos

[
(p1 − p2) · (x1 − x2)

�

])
. (35)
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To insert this one, a difficult part of the calculation is

∫
d3x1d

3x2

(−x1 + X1

2(
x1)2
− −x1 + X2

2(
x2)2

)2
(|φ1(x1)|2|φ2(x2)|2 − |φ1(x2)|2|φ2(x1)|2)2

4ρ2
0 ρ(x1,x2)

= (
x1)
3(π)3/2e

− (X1−X2)2

4(
x1)2

ρ0(2π(
x1)2)3

(
X1 − X2

2(
x1)2

)2

×
∫

d3x1

e
− x2

1
4(
x1)2 sinh2(

(X1−X2)·x1
2(
x1)2 )

cosh(
(X1−X2)·x1

2(
x1)2 ) − cos[ (p1−p2)·x1
�

] . (36)

If p2 − p1 = 0, we can integrate it as

∫
d3x1

e
− x2

1
4(
x1)2 sinh2[ (X1−X2)·x1

2(
x1)2 ]
cosh[ (X1−X2)·x1

2(
x1)2 ] − 1
= 8π

√
π(
x1)

3
(
1 + e

(X1−X2)2

4(
x1)2
)
. (37)

Using them, we find

∫
d3x1d

3x2
(∇1ρ(x1,x2))

2

ρ(x1,x2)
= (X1 − X2)

2

4ρ0(
x1)4

(
1 + e

− (X1−X2)2

4(
x1)2
)

+ 1

2ρ0

(
6 − 6|k21|2

(
x1)2
+ (X1 − X2)

2

2(
x1)4

)
− (X1 − X2)

2

2ρ0(
x1)4
. (38)

It leads to

Vst = m1D
2
1 + m2D

2
2

4

(
(X1 − X2)

2

4ρ0(
x1)4
e

− (X1−X2)2

4(
x1)2 + 3

ρ0(
x1)2
(1 − |k21|2)

)
. (39)

This is always repulsive for any D.

5.3 Stochastic Potential: Spin Up-Down

We consider spin up-down correlation with c1 = s2 = 0 so that ρ0 = 1. The stochastic po-
tential can be easily evaluated by calculating

∫
d3x1d

3x|φ1(x1)|2|φ2(x2)|2
(

−m1D
2
1

4
∇2

1 − m2D
2
2

4
∇2

2

)
ln[|φ1(x1)|2|φ2(x2)|2]

= 3m1D
2
1

4(
x1)2
+ 3m2D

2
2

4(
x2)2
, (40)

and
∫

d3x1d
3x2 φ12(x1)φ

∗
12(x2)

(
−m1D

2
1

4
∇2

1 − m2D
2
2

4
∇2

2

)
ln[φ12(x1)φ

∗
12(x2)]

= 3(m1D
2
1 + m2D

2
2)

4

(
x1)
2 + (
x2)

2

2(
x1
x2)2
|k21|2, (41)



1040 Int J Theor Phys (2010) 49: 1029–1043

where φ12(x) = φ∗
1 (x)φ2(x). Then we find

Vst = 3(m1D
2
1 + m2D

2
2)((
x1)

2 + (
x2)
2)

4(
x1
x2)2
(1 − |k21|2). (42)

This is an attractive potential toward X1 = X2. It becomes important for the next section
with the possibility to make Cooper pairs.

5.4 Coulomb Potential

The Coulomb potential is also considered. We simply calculate 〈�| e2

4πε0|x1−x2| |�〉, then the
main part is
∫

d3x1d
3x2

e2|φ1(x1)|2|φ2(x2)|2
4πε0ρ0|x1 − x2| = e2

4πε0ρ0|X1 − X2|erf

[ |X1 − X2|√
2(
x1)2 + 2(
x2)2

]
, (43)

where erf[x] denotes the error function. For the same spin, it includes exchange interaction.
In the case p1 = p2, it can be calculated as

−
∫

d3x1d
3x2

e2φ
†
1(x1)φ2(x1)φ

†
2(x2)φ1(x2)

4πε0|x1 − x2| = −8e2(
x1
x2)
2e

− (X1−X2)2

2(
x1)2+2(
x2)2

4πε0ρ0

√
2π((
x1)2 + (
x2)2)5/2

. (44)

We can see that the Coulomb potential with the exchange potential is always repulsive. Thus
two electrons with the same spin cannot be attracted in our model.

6 Cooper Pair Formation

In the previous section, we have calculated the energy including the interaction between
two Gaussian waves of the approximate solution. With the aid of the stochastic potential,
two electrons of opposite spins can be combined if the potential is strong enough. Mainly,
it needs two conditions to make a pair, i.e. large diffusion coefficient and small position
fluctuation.

Considering two electrons of spins up and down, the total energy is

E = �
2

2me

(
3

4

(
1

(
x1)2
+ 1

(
x2)2

)
+ p2

1 + p2
2

�2

)

+ 3me(D
2
1 + D2

2)((
x1)
2 + (
x2)

2)

4(
x1
x2)2
(1 − |k21|2) +

e2erf[ |X1−X2|√
2(
x1)2+2(
x2)2

]
4πε0|X1 − X2| . (45)

When we consider the conditions of D1 = D2 and 
x1 = 
x2 with denoting De and 
xe , it
is simplified as

E = �
2

2me

(
3

2(
xe)2
+ p2

1 + p2
2

�2

)
+ 3meD

2
e

(
xe)2
(1 − |k21|2) + e2erf[ |X1−X2|

2
xe
]

4πε0|X1 − X2| .
(46)

In order to find the potential minimum, we write |X1 − X2| = r and consider differentiation
of the energy

∂E

∂r
= 3meD

2
e re

− r2

4(
xe)2
− (
xe)2(p1−p2)2

�2

2(
xe)4
+ e2

4πε0

(
e

− r2

4(
xe)2√
π
xer

− erf[ r
2
xe

]
r2

)
. (47)



Int J Theor Phys (2010) 49: 1029–1043 1041

Fig. 1 This line is plotted by
solving ∂E/∂r = 0 of (47) and
choosing larger r . If ks is larger
than about 0.19, rc can have
nonzero value

Fig. 2 Configuration of the
potential, last two terms of (46),
for ks = 0.2, 0.4, 1/

√
π . The

potential of r = 0 is
V = (1/

√
π)(e2/4πε0a0) while

r = ∞ leads
V = ks(e

2/4πε0a0). If
ks > 1/

√
π , we obtain

V (r = 0) < V (r = ∞)

For the equation ∂E/∂r = 0, nonzero solution about r that we write rc can be found when
the first term is larger than some critical value. It can be characterized by the next parameter

ks = 3αmeD
2
e e

− (
xe)2(p1−p2)2

�2

�c
xe

. (48)

If ks is roughly larger than 0.19, rc can have nonzero value as described in Fig. 1. In that
case, the two electrons will be stable at r = 0, see Fig. 2. Therefore the condition to make a
Cooper-pair can read

3αmeD
2
e e

− (
xe)2(p1−p2)2

�2

�c
xe

� 0.19. (49)

This can be regarded as the condition for the diffusion coefficient if the difference of momen-
tums is negligible and the amount of position fluctuation is known. For instance, if p1 ∼ p2

and 
xe ∼ a0, we have De � 0.01 [m2/s].
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Next, we consider the gap equation. Defining the energy gap, from infinite distance to
combined state, by Vgap = V (r = 0) − V (r = ∞) with the constraint p1 = p2, we have

Vgap = e2

4πε0

(
1√
π

− ks

)
. (50)

Then, it can be negative when ks > 1/
√

π . Rewriting it to the relation with the diffusion
coefficient by assuming 
xe ∼ a0, we have D > 1.7 × 10−2 [m2/s]. At a rough estimation,
we can approximately obtain usual gap equation. That is, considering that electrons on the
Fermi surface with a width of �ωc form Cooper pairs, we can estimate

E ≈ 2EF − 2�ωce
2/N(0)Vgap . (51)

To make more correct prediction, it needs to estimate the gap equation with our potential
including Gaussian and error functions. Numerical result with the Gaussian potential is ob-
tained by [29]. Our model seems applicable in the same method.

It should be noted that the approximate solution of two Gaussian waves are valid only if
they are well separated, then the value of V (r = 0) is not reliable. Besides, the stable point
might be altered to r �= 0. Nonlinear analysis will be necessary to make it precise.

7 Conclusion

We have analyzed a new interaction term that is led from the Hamiltonian of the Nelson
equations with a bit of modification. It is interesting because the interaction does not have a
coupling constant of free parameter. By measuring the position fluctuation and the diffusion
coefficient, the interaction can be evaluated. As it is attractive between spin up and spin
down, the stochastic interaction can exceed the Coulomb repulsion. Our prediction is the
formation of Cooper-pairs and positive binding energy relating to a specific value of a new
parameter ks . With this parameter, the critical temperature can be obtained with assuming
phenomenological expression of the diffusion coefficient.

There can be wide applications of our quantization scheme of the Brownian motion.
For example, nuclear and atom will have complicated structures due to nonlinearity when
the stochastic potential is applied. Including the shift of energy spectrum of hydrogen and
helium, it modifies conventional results of quantum mechanics. In other words, investigating
any quantum effect with non-negligible diffusion coefficient, there must be some anomalous
correction. Searching the dependence of the position fluctuation and the diffusion coefficient
for this, it seems easy to confirm the model.

The strongest prediction is that the critical temperature of superconductor will be influ-
enced by the diffusion coefficient with a specific function. Since the attraction between two
electrons can be determined by measurable parameters, it will predict several other things
in phenomena of superconductivity. Seeking the relation between superconductivity and
diffusion, the configuration of the stochastic potential will be probed via the attraction of
Cooper-pairs. It can be a great advantage if superconductivity is resolved by a few known
parameters.
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